| MODEL NO : | TM043NDH02 | |----------------|--------------------------------| | MODEL VERSION: | 40 | | SPEC VERSION : | 2.4 | | ISSUED DATE: | 2017-09-25 | | | Specification ct Specification | Customer : | Approved by | Notes | |-------------|-------| | | | #### **TIANMA Confirmed:** | Prepared by | Checked by | Approved by | |-------------|---------------|-------------| | Lifeng Chen | Xiaoxing Ding | Feng Qin | This technical specification is subjected to change without notice ## **Table of Contents** | Tab | ble of Contents |
2 | |-----|---------------------------------------|-------| | Red | cord of Revision |
3 | | | General Specifications | | | | Input/Output Terminals | | | | Absolute Maximum Ratings | | | | | | | | Timing Chart | | | | Optical Characteristics | | | 7 | Environmental / Reliability Test | 17 | | 8 | · · · · · · · · · · · · · · · · · · · | | | 9 | | | | | Precautions for Use of LCD Modules | | ## **Record of Revision** | Rev | Issued Date | Description | Editor | |-----|-------------|--|---------------| | 1.0 | 2015-04-20 | Preliminary Specification Release | Hongkang Yan | | 2.0 | 2015-11-25 | Update IC characteristics | Lifeng Chen | | 2.1 | 2016-04-07 | Update LCM drawing | Lifeng Chen | | 2.2 | 2017-4-5 | Update Led life time | Longping.Deng | | 2.3 | 2017-09-25 | Update timing chart and power on/off sequence. | Gang.Li | | 2.4 | 2018-08-17 | Update PIN definition and Block diagram | Zhengdong Liu | | | | | ▶ | # 1 General Specifications | | Feature | Spec | | | |----------------------------|--------------------------------|-------------------------|--|--| | | Size | 4.3 inch | | | | | Resolution | 480(RGB)×272 | | | | | Technology Type | a-Si | | | | | Pixel Configuration | Vertical Stripe | | | | Display Spec. | Pixel pitch(mm) | 0.198×0.198 | | | | | Display Mode | TN, Normally white | | | | | Surface Treatment | AG | | | | | Viewing Direction | 6 o'clock | | | | | Gray Scale Inversion Direction | 12 o'clock | | | | | LCM (W x H x D) (mm) | 105.50×67.20×2.9 | | | | | Active Area(mm) | 95.040×53.856 | | | | Mechanical | With /Without TSP | Without TSP | | | | Characteristics | Matching Connection Type | FH19SC-40S-0.5SH(HIROS) | | | | | LED Numbers | 10 LEDS | | | | | Weight (g) | 44.4 | | | | Flootwing | Interface | RGB 24bits | | | | Electrical Characteristics | Color Depth | 16.7M | | | | | Driver IC | ST7282T2 | | | Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift. Note 2: Requirements on Environmental Protection: Q/S0002 Note 3: LCM weight tolerance: ± 5% # 2 Input/Output Terminals Matched connector:FH19SC-40S-0.5SH(HIROS) | Matched connector:FH19SC-40S-0.5 | | | | | | | | | |----------------------------------|--------|----------|--------------------|--------|--|--|--|--| | Pin
No. | Symbol | I/O | Function | Remark | | | | | | 1 | VLED- | Р | Back light cathode | | | | | | | 2 | VLED+ | Р | Back light anode | | | | | | | 3 | GND | Р | Ground | | | | | | | 4 | VDD | Р | Power supply | | | | | | | 5 | R0 | I | Red Data input | | | | | | | 6 | R1 | I | Red Data input | | | | | | | 7 | R2 | I | Red Data input | | | | | | | 8 | R3 | I | Red Data input | | | | | | | 9 | R4 | I | Red Data input | | | | | | | 10 | R5 | I | Red Data input | | | | | | | 11 | R6 | I | Red Data input | | | | | | | 12 | R7 | I | Red Data input | | | | | | | 13 | G0 | I | Green Data input | | | | | | | 14 | G1 | I | Green Data input | | | | | | | 15 | G2 | I | Green Data input | | | | | | | 16 | G3 | I | Green Data input | | | | | | | 17 | G4 | I | Green Data input | | | | | | | 18 | G5 | I | Green Data input | | | | | | | 19 | G6 | 1 | Green Data input | | | | | | | 20 | G7 | 1 | Green Data input | | | | | | | 21 | B0 | 1 | Blue Data input | | | | | | | 22 | B1 | 1 | Blue Data input | | | | | | | 23 | B2 | \ | Blue Data input | | | | | | | 24 | B3 | I | Blue Data input | | | | | | | 25 | B4 | I | Blue Data input | | | | | | | 26 | B5 | I | Blue Data input | | | | | | | 27 | B6 | I | Blue Data input | | | | | | | 28 | B7 | 1 | Blue Data input | | | | | | | 29 | GND | Р | Ground | | | | | | #### Model No.TM043NDH02 | 30 | DCLK | I | Clock signal; latching data at the rising edge | | |----|-------|---|--|----------| | 31 | DISP | 1 | Display control/standby mode selection, Internal pull low DISP="Low": Standby; DISP="High": Normal display | | | 32 | HSYNC | 1 | Horizontal sync signal; negative polarity | | | 33 | VSYNC | I | Vertical sync signal; negative polarity | | | 34 | DE | I | Data input enable. Active High to enable the data input When not used in SYNC mode, user should connect it to "Low". | | | 35 | NC | - | No Connection | \wedge | | 36 | GND | Р | Ground | | | 37 | NC | - | No Connection | | | 38 | NC | - | No Connection | | | 39 | NC | - | No Connection | | | 40 | NC | - | No Connection | | Note1: Please add the FPC connector type and matched one if necessary . Note2: I——Input, O——Output, P——Power/Ground Note3: Display direction description # 3 Absolute Maximum Ratings GND=0V | Item | Symbol | MIN | MAX | Unit | Remark | |-------------------------|----------|------|-----|------------|----------------------------------| | Power Voltage | VCC | -0.3 | 4.6 | V | Natad | | Input voltage | V_{IN} | -0.3 | 4.6 | V | Note1 | | Operating Temperature | Тор | -20 | 70 | $^{\circ}$ | | | Storage Temperature | Tst | -30 | 80 | $^{\circ}$ | | | | RH | | ≤95 | % | Ta≲40 °C | | Dolotivo I I umiditu | | | ≤85 | % | 40°C < Ta ≤ 50°C | | Relative Humidity Note2 | | | ≤55 | % | 50°C <ta≤60°c< td=""></ta≤60°c<> | | NOIGZ | | | ≤36 | % | 60°C < Ta ≤ 70°C | | | | | ≤24 | % | 70°C <ta≤80°c< td=""></ta≤80°c<> | | Absolute Humidity | AH | | ≤70 | g/m³ | Ta>70℃ | Table 3 Absolute Maximum Ratings Note1: Input voltage include R0~R5, G0~G5, B0~B5, Dotclk, Hsync, Vsync, Enable, R/L, U/D Note2: Ta means the ambient temperature. It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed. #### 4 Electrical Characteristics #### 4.1 Driving TFT LCD Panel | Item | | Symbo | MIN | TYP | MAX | Unit | Remark | |-----------------------|------------|-------|---------|-----|----------|-------------|------------------| | Supply Voltage | ge | VDD | 3.0 | 3.3 | 3.6 | V | | | Input Signal Voltage | Low Level | VIL | DGND | | 0.3×VDD | V | | | input digital voltage | High Level | Vін | 0.7×VDD | | VDD | V | | | Output Signal Voltage | Low Level | Vol | DGND | | DGND+0.4 | V | | | Output Signal Voltage | High Level | Vон | VDD-0.4 | | VDD | > | | | Power Consumption | 60Hz | Р | | 75 | | mW | Black
pattern | #### 4.2 Backlight Unit | Item | Symbol | MIN | TYP | MAX | Unit | Remark | |-----------------|------------------|-------|-------|-----|------|-----------| | Forward Current | lF | | 40 | 50 | mA | 10 LEDs | | Forward Current | VF | -15 | 16 | 18 | V | (2 LED | | Voltage | | | | | | Serial,5 | | Backlight Power | W _B L | | 640 | _ | mW | LED | | Consumption | | | | | | Parallel) | | LED life time | | 20000 | 30000 | - | Hrs | | Note1: The LED driving condition is defied for each LED module (5 LED Serial, 2 LED Parallel). Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only. Note3: IF is defined for one channel LED. Optical performance should be evaluated at Ta=25°C only if LED is driven by high current, high ambient temperature & Humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data. Note4: The LED driving condition is defined for each LED module. Figure 4.2 LED connection method # 4.3 Block Diagram LCD Module diagram ## 5 Timing Chart #### 5.1 AC characteristics VDD=3.3V Ta=25°C | Parameter | Symbol | Min | Тур | Max | Unit | Remark | |-----------------------|-------------------|------|-----|-----|------|--------| | DCLK Pulse High Width | T_cwh | 26.7 | ı | • | ns | | | DCLK Pulse Low Width | T_cwl | 26.7 | ı | ı | ns | | | DE Setup Time | T _{dest} | 10 | - | - | ns | | | DE Hold Time | T_{dehd} | 10 | - | - | ns | | | HSYNC Setup Time | T _{hst} | 12 | - | - | ns | | | HSYNC Hold Time | T_{hhd} | 12 | - | - | ns | | | VSYNC Setup Time | T _{vst} | 12 | - | - | ns | | | VSYNC Hold Time | T_{vhd} | 12 | - | - | ns | | | Data Setup Time | T _{dsu} | 12 | - | - | ns | | | Data Hold Time | T_{dhd} | 12 | - | - | ns | | **Table 5.1 Input Setup Timing Parameters Requirement** Figure 5.1 Clock and Data Input Timing Diagram #### 5.2 Data Input Timing Parameter Setting | | Item | Symbol | Min. | Тур. | Max. | Unit | Remark | |----------------|----------------|--------|------|------|------|------|-----------------------| | DCLK Frequency | | Fclk | 8 | 9 | 12 | MHz | | | DCLK Period | | Tclk | 83 | 111 | 125 | ns | | | HSYNC | Period Time | Th | 485 | 531 | 598 | DCLK | | | | Display Period | Thdisp | | 480 | | DCLK | | | | Back Porch | Thbp | 3 | 43 | 43 | DCLK | By H_Blanking setting | | | Front Porch | Thfp | 2 | 8 | 75 | DCLK | | | | Pulse Width | Thw | 2 | 4 | 75 | DCLK | | | VSYNC | Period Time | Tv | 276 | 292 | 321 | Н | | | | Display Period | Tvdisp | | 272 | | Н | | | | Back Porch | Tvbp | 2 | 12 | 12 | Н | By V_Blanking setting | | | Front Porch | Tvfp | 2 | 8 | 37 | Н | | | | Pulse Width | Tvw | 2 | 4 | 37 | Н | | Note: It is necessary to keep Tvbp =12 and Thbp =43 in sync mode. DE mode is unnecessary to keep it. Table 5.2 Data Input Timing Parameters ## 5.6 Power ON/OFF Sequence #### 5.6.1 Power ON Sequence Figure 5.6.1 Power on sequence Figure 5.6.2 Power off sequence **Note 1:** To is determined by the external power. The slew time should be set longer than 0ms and shorter than 20ms. T1 is the time from stable VDD to the first VSYNC, this value should be set longer than 0ms. **Note 2:** When power on, VLED on should be set 8 frames(16.7*8=134ms)delayed to VDD on. When power off, VLED off should be set at least 4 frames(16.7*4=67ms)before VDD off. 6 Optical Characteristics | Item | | Symbol | Condition | Min | Тур | Max | Unit | Remark | | |----------------|---------|------------------|-----------------|-------|-------|-------|-------------------|----------|--| | View Angles | | θТ | | 70 | 80 | - | | Note 2.2 | | | | | θВ | CR≧10 | 50 | 60 | - | Degree | | | | | | θL | | 70 | 80 | - | | Note2,3 | | | | | θR | | 70 | 80 | - | | | | | Contrast Ratio | | CR | θ=0° | 700 | 900 | - | | Note 3 | | | Response Time | | T _{ON} | 25℃ | - | 20 | 30 | ms | Note 4 | | | | | T _{OFF} | 25 ℃ | | | | | | | | | White | х | Backlight is on | 0.255 | 0.305 | 0.355 | | Note 1,5 | | | | vviille | у | | 0.277 | 0.327 | 0.377 | | | | | | Red | х | | 0.534 | 0.584 | 0.634 | | Note 1,5 | | | Chromaticity | | у | | 0.300 | 0.350 | 0.400 | | | | | Chromaticity | Green | х | | 0.290 | 0.340 | 0.390 | | Note 1 5 | | | | Green | у | | 0.543 | 0.593 | 0.643 | | Note 1,5 | | | | Blue | х | | 0.102 | 0.152 | 0.202 | | Note 1,5 | | | | Biue | у | | 0.040 | 0.090 | 0.140 | | | | | Uniformity | | U | | 75 | 80 | - | % | Note 6 | | | NTSC | | | | 45 | 50 | - | % | Note 5 | | | Luminance | | L | | 350 | 400 | - | cd/m ² | Note 7 | | #### **Test Conditions:** - 1. I_F = **40** mA, and the ambient temperature is 25 °C. - 2. The test systems refer to Note 1 and Note 2. Note 1: Definition of optical measurement system. The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel. Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80). Note 3: Definition of contrast ratio Contrast ratio (CR) = Luminance measured when LCD is on the "White" state Luminance measured when LCD is on the "Black" state "White state ": The state is that the LCD should drive by Vwhite. "Black state": The state is that the LCD should drive by Vblack. Vwhite: To be determined Vblack: To be determined. #### Note 4: Definition of Response time The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%. Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD. Note 6: Definition of Luminance Uniformity Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area. Luminance Uniformity (U) = Lmin/Lmax L-----Active area length W----- Active area width Lmax: The measured Maximum luminance of all measurement position. Lmin: The measured Minimum luminance of all measurement position. Note 7: Definition of Luminance: Measure the luminance of white state at center point. ## 7 Environmental / Reliability Test | No | Test Item | Condition | Remarks | |----|--|---|---| | 1 | High Temperature
Operation | Ts=+70℃,240 hours | IEC60068-2-1:2007
GB2423.2-2008 | | 2 | Low Temperature Operation | Ta=-20℃,240 hours | IEC60068-2-1:2007
GB2423.1-2008 | | 3 | High Temperature Storage | Ta=+80°C, 240 hours | IEC60068-2-1:2007
GB2423.2-2008 | | 4 | Low Temperature
Storage | Ta=-30℃,240 hours | IEC60068-2-1:2007
GB2423.1-2008 | | 5 | Storage at High
Temperature and
Humidity | Ta=+60℃,90% RH 240 hours | IEC60068-2-78 :2001
GB/T2423.3—2006 | | 6 | Thermal Shock (non-operation) | -20°C 30min ~+80°C 30min,
Change time: 5min, 20 cycles | Start with cold
temperature,
End with high
temperature,
IEC60068-2-14:1984,G
B2423.22-2002 | | 7 | ESD | C=150pF,R=330 Ω , 5 point/panel,
Air: \pm 8KV, 5 times; Contact \pm 4KV,5times
(Environment:15 $^{\circ}$ C \sim 35 $^{\circ}$ C,30% \sim 60%,80Kpa \sim 106Kpa) | IEC61000-4-2:2001
GB/T17626.2-2006 | | 8 | Vibration Test | Frequency range:10~55Hz Sroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z(6 hours for total)(package condition) | IEC60068-2-6:1982
GB/T2423.10—1995 | | 9 | Mechanical Shock
(Non OP) | 60G 6ms, \pm X, \pm Y, \pm Z 3 times for each direction | IEC60068-2-27:1987
GB/T2423.5—1995 | | 10 | Package Drop Test | Height:80cm,1corner,3edges,6surfaces | IEC60068-2-32:1990
GB/T2423.8—1995 | Note1: Ts is the temperature of panel's surface. Note2: Ta is the ambient temperature of sample. Note3: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature. Note 4: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification. ## 8 Mechanical Drawing # 9 Packing Drawing #### **Per Carton** | No | Item | Model (Material) | Dimensions(m
m) | Unit Weight(Kg) | Quantity | Rema
rk | | |----|----------------|---------------------|----------------------|-----------------|----------|------------|--| | 1 | LCM module | TM043NDH02 | 105.5×67.20×2.
90 | 58.7 | 144 | | | | 2 | Tray | PET (Transmit) | 485×330×13.8 | 0.14 | 27 | | | | 3 | Dust Proof Bag | PE | 700×545mm | 0.046 | 1 | | | | 4 | вох | CORRUGATED
PAPER | 520×345×74 | 0.44 | 3 | | | | 5 | Carton | CORRUGATED
PAPER | 544×365×250 | 1.01 | 1 | | | | 6 | Total weight | 8 Kg±5%Kg | | | | | | 纸箱堆叠数按2×3/每层×共5层 ### 10 Precautions for Use of LCD Modules #### 10.1 Handling Precautions - 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc. - 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water. - 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. - 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. - 10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents: - Isopropyl alcohol - Ethyl alcohol Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following: - Water - Ketone - Aromatic solvents - 10.1.6 Do not attempt to disassemble the LCD Module. - 10.1.7 If the logic circuit power is off, do not apply the input signals. - 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment. - 10.1.8.1 Be sure to ground the body when handling the LCD Modules. - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground. - 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions. - 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated. - 10.2 Storage precautions - 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. - 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is: - Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$ - 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas. - 10.3 Transportation Precautions - 10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.